
ENERGY LEVELS IN ONE DIMENSION

Consider a free electron gas in one dimension taking into account quantum theory and the

Pauli’s principle. The wave function of electrons confined to a length L by infinite barrier

potential is the solution of Schrödinger equation

Hψ = Eψ

where H = p2

2m
= −h̄2

2m
d2

dx2
is the Hamiltonian and m is the mass of the electron.

Substitution gives Hψn = −h̄2
2m

d2ψn
dx2

= Enψn.

⇒ d2ψn
dx2

+ k2ψn = 0, where k2 = 2mEn
h̄2

.

Let the solution be ψn(x) = Acoskx+Bsinkx.

The boundary conditions ψn(0) = 0 and ψn(l) = 0.

Using ψn(0) = 0, A=0.

⇒ ψn(x) = Bsinkx.

Using ψn(l) = 0, Bsinkl = 0. But B 6= 0.

⇒ sinkl = 0

kl = nπ

⇒ k = nπ
l

.

The boundary conditions are satisfied if the wave function is sinusoidal with an integral number

n of half wavelength between zero and l.

l = nλn
2

.

Thus k = nπ. 2
λn

= 2π
λn

.

ψn(x) = Bsin( 2π
λn

)x.

Hence using k2 = (nπ
l

)2.
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Equating the two equations for k2 gives

2mEn
h̄2

= (nπ
l

)2.

⇒ En = h̄2n2π2

2ml2
= h̄2

2m
(nπ
l

)2.

Suppose N electrons are to be accomodated on a line. According to the Pauli exclusion

principle, no two electrons can have all their quantum numbers identical. However more than

one orbital can have the same energy. This is called degeneracy.

Let nf denote the top most filled energy level where we start filling from the bottom and con-

tinue until N electrons are accomodated. It is convenient to assume that N is even.

⇒ 2nf = N .

Using the condition nf = N
2

, then Ef = h̄2

2m
(Nπ

2l
)2, which is an expression for Fermi energy in

one dimension.

Definition: Fermi energy is the energy of the highest occupied level in the ground state of the

N electron system. The ground state is the state of the N electron system at absolute zero.
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FREE ELECTRON GAS IN 3-D

The free particle Schrödinger equation in 3-D is

− h̄2

2m
( ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
)ψk(~r) = Ekψk(~r)

Consider a cube of edge l

If the electrons are confined to such a cube

ψn(~r) = Asin(πnxx
l

)sin(πnyy
l

)sin(πnzz
l

).

where nx, ny, nz are positive integers. Letting ψ = X(x)Y (y)Z(z),

From ∂2ψ
∂x2

= Y Z ∂2X
∂x2

∂2ψ
∂y2

= XZ ∂2Y
∂y2

∂2ψ
∂z2

= XY ∂2Z
∂z2

Then − h̄2

2m
(Y Z ∂2X

∂x2
+XZ ∂2Y

∂y2
+XY ∂2Z

∂z2
) = EXY Z

− h̄2

2m
( 1
X
∂2X
∂x2

+ 1
Y
∂2Y
∂y2

+ 1
Z
∂2Z
∂z2

) = E

For convenience, the wave function should be periodic and should satisfy the boundary condi-

tions. The wave function is required to be periodic in XYZ with period l.
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Thus ψ(x+ l, y, z) = ψ(x, y, z)

ψ(x, y + l, z) = ψ(x, y, z)

ψ(x, y, z + l) = ψ(x, y, z)

Wave functions satisfying free particle Schrödinger equation and periodicity condition are of

the form of travelling plane wave

ψk(r) = exp(i~k.~r), provided that k satisfy kx = 0,±2π
l
,±4π

l
, ... and similarly for ky and kz.

Any component of ~k of the form 2nπ
l

satify the periodicity condition over a length l for n being

a positive or negative integer. The components of ~k are the quantum numbers of the problem

along with the quantum number ms for the spin direction. Hence for kx,

exp(ik(x+ l)) = exp(i2nπ(x+l
l

)) = exp( i2nπx
l

)exp(i2πn) = exp( i2nπx
l

) = exp(ikx).

This equation confirms that wave functions of individual components are of the forms of trav-

elling wave.

From Ek = h̄2k2

2m
= h̄2

2m
(k2
x + k2

y + k2
z), where k = 2π

λ
.

Linear momentum operator p = −ih̄∇.

Then pψk(r) = −ih̄∇ψk(r) = h̄kψk(r).

ψk is an eigen function of the linear momentum with eigen value h̄k. The particle velocity in

orbital k is given by v = h̄k
m

.

In the ground state of a system of N free electrons the occupied orbitals may be represented as

points inside a sphere in k-space. The energy at the surface of sphere is Fermi energy.

Ef = h̄2

2m
k2
f .

There is one allowed vector for the volume element (2π
l

)3 of k space. Thus in a sphere of

volume
4πk3f

3
, the total number of orbitals N is

2.
4πk3f

3

( 2π
l

)3
=

V k3f
3π2 = N
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Hence kf = (3π2N
v

)
1
3 .

But N
V

=electron concentration.

Hence Ef = h̄2

2m
(3π2N

V
)
2
3 .

The electron velocity at the Fermi surface is vf =
h̄kf
m

= ( h̄
m

).(3π2N
V

)
1
3

⇒ vf ∝ (N
V

)
1
3 .

The Fermi temperature in Kelvin is given as Tf =
Ef
kB

, where kB is Boltzmann constant.

Tf = 1
kB
. h̄

2

2m
(3π2N

V
)
2
3

Tf ∝ (N
V

)
2
3

DENSITY OF STATE

The density of state is the number of orbitals per unit energy range.

From Ef = h̄2

2m
(3π2N

V
)
2
3

⇒ N = V
3π2 (2mE

h̄2
)
3
2 .

Density of state D(E) = dN
dE

.

D(E) = V
2π2 (2m

h̄2
)
3
2E

1
2 .
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⇒ N = V
3π2 (2mE

h̄2
)
3
2

N
E

= V
3π2 (2m

h̄2
)
3
2E

1
2

3N
2E

= V
2π2 (2m

h̄2
)
3
2E

1
2

3N
2E

= D(E)

A graph of density of orbitals D(E) against energy is of the form shown below:

The shaded area represents filled orbital at absolute zero (Fermi surface). A dashed curve

represents density f(E, T )D(E) of filled orbital at a finite temperature such that kBT is small

in comparison with Ef . The average energy is increased when the temperature is increased

from 0 to T, for electrons thermally excited from region 1 to region 2.

FERMI DIRAC DISTRIBUTION FUNCTION

As seen earlier when electrons are filling the energy levels, two electrons occupy the lowest

energy level, two or more the next level and the process continues until all the electrons in the

metal have been accomodated. The distribution of electrons among the levels is best described

by the distribution function f(E) which is defined as the probability that the level E is occupied
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