
⇒ N = V
3π2 (2mE

h̄2
)
3
2

N
E

= V
3π2 (2m

h̄2
)
3
2E

1
2

3N
2E

= V
2π2 (2m

h̄2
)
3
2E

1
2

3N
2E

= D(E)

A graph of density of orbitals D(E) against energy is of the form shown below:

The shaded area represents filled orbital at absolute zero (Fermi surface). A dashed curve

represents density f(E, T )D(E) of filled orbital at a finite temperature such that kBT is small

in comparison with Ef . The average energy is increased when the temperature is increased

from 0 to T, for electrons thermally excited from region 1 to region 2.

FERMI DIRAC DISTRIBUTION FUNCTION

As seen earlier when electrons are filling the energy levels, two electrons occupy the lowest

energy level, two or more the next level and the process continues until all the electrons in the

metal have been accomodated. The distribution of electrons among the levels is best described

by the distribution function f(E) which is defined as the probability that the level E is occupied
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by an electron.

At T=0 K the distribution function takes the form

f(E) =


1 ; E < Ef ,

0 ; Ef < E,

The distribution means that all levels below Ef are completely filled and those above Ef are

completely empty.

At T 6= 0K, f(E) is given by f(E) = 1

e
E−µ
kBT +1

, where µ is a chemical potential usually a function

of temperature. The function is known as the Fermi-Dirac distribution function.

At T=0 K; µ = Ef and f(E) = 0.

A graph of f(E) against E is as shown;

Note: The distribution at T 6= 0K is substantially the same as in T=0 K except very close

to the fermi level where some of the electrons are excited from below Ef to above it. When

the system is heated, thermal energy excites the electrons but this energy is not shared equally

by all the electrons as would be the case in classical treatment. This is because the electrons
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lying below the fermi level Ef cannot absorb energy. If they did then they would move to

higher level which would already be occupied, thus violating Pauli-exclusion principle. Thus

only those electrons close to the fermi level can be excited because the levels above Ef are

empty and hence they would move to those levels without violating Pauli exclusion principle.

The above statement means that the fermi surface is not affected appreciably by temperature

because as seen when the temperature is increased only those electrons close to the fermi sur-

face are excited from the inside to the outside of the fermi sphere. Since they are few, they

have very little effect over all. Thus fermi surface has an independent permanent identity and

should be regarded as a real physical characteristic of the metal.

ELECTRONIC HEAT CAPACITY

In statistical mechanics the free particle has a heat capacity of 3
2
kB. For N atoms, then heat

capacity is equal to 3
2
NkB.

However the observed electronic contributions at room temperature is usually less than 0.01 of

this value. To account for this discrepancy we shall use Fermi’s finding which recognise that

the specific heat varnishes at absolute zero and that at low temperatures it is proportional to

absolute temperature.

When a specimen is heated from absolute zero, not every electrons gain energy ≈ kBT as ex-

pected but only those electrons in orbitals within the energy range kBT of the fermi level are

thermally excited.

For a system of N electrons heated from 0 K to a temperature T, for kB << Ef , then the

increase in internal energy is given by

∆U =
∫∞
Ef

(E − Ef )f(E)D(E)dE +
∫ Ef

0
(Ef − E)[1− f(E)]D(E)dE=A+B,
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where A represents energy needed to take electrons from Ef to orbitals of energy E > Ef , B is

the energy needed to bring the electron to Ef from orbitals below Ef .

f(E)D(E)dE is the number of electrons elevated to orbitals in the energy range dE at an

energy E.

[1− f(E)] is the probability that an electron has been removed from an orbital E.

From
∫ y
x

=
∫ 0

x
+
∫ y

0
=

∫ 0

x
−
∫ 0

y
=

∫ y
0
−
∫ x

0

Thus ∆U = [
∫∞

0
−
∫ Ef

0
](E − Ef )f(E)∆(E)dE −

∫ Ef
0

(E − Ef )[1− f(E)]∆(E)dE.

∆U =
∫∞

0
(E − Ef )f(E)∆(E)dE −

∫ Ef
0

(E − Ef )∆(E)dE.

The electronic heat capacity is given by Cel = dU
dT

,

Cel = d
dT

∫∞
0

(E − Ef )f(E)∆(E)dE −
∫ Ef

0
(E − Ef )∆(E)dE.

Since Ef is a constant and E and ∆(E) are temperature independent, the second term vanishes;

Cel =
∫∞

0
(E − Ef )∆(E)df(E)

dT
dE.

Recall that f(E) = 1

e
E−µ
kBT +1

.

When kBT << Ef , µ = Ef and kBT = τ .

⇒ f(E) = 1

e
E−Ef
τ +1

.

From τ = kBT , dτ
dT

= kB.

But df
dτ

= (
E−Ef
τ2

. e
E−Ef
τ

(e
E−Ef
τ +1)2

.

From chain rule, df
dT

= df
dτ
. dτ
dT

.

⇒ df
dT

= kB(
E−Ef
τ2

) e
E−Ef
τ

(e
E−Ef
τ +1)2

.

Let x =
E−Ef
τ

dE = τdx = kBTdx

Changing the limits gives,

Cel = ∆(E)
∫∞
−
Ef
τ

kB
x2ex

(ex+1)2
dE
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E x

0 -
Ef
τ

∞ ∞

Cel = ∆(E)
∫∞
−
Ef
τ

kBx
2ex

(ex+1)2
kBTdx

Cel = k2
BT∆(E)

∫∞
−
Ef
τ

x2ex

(ex+1)2
dx

For kBT << Ef , τ = kBT → 0 as T → 0.

⇒ −Ef
τ
→∞ and E ≈ Ef .

Cel = k2
BT∆(Ef )

∫∞
−∞

x2ex

(ex+1)2
dx

Cel = 2k2
BT∆(Ef )

∫∞
0

x2ex

(ex+1)2
dx

Using standard integrals,
∫∞
−∞

x2ex

(ex+1)2
dx = π2

3
.

⇒
∫∞

0
x2ex

(ex+1)2
dx = π2

6
.

Cel = k2
BT∆(Ef ).

π2

3
.

Cel = 1
3
k2
BTπ

2∆(Ef ).

But ∆(Ef ) = dN
dEf

.

where N = V
3π2 (

2mEf
h̄2

)
3
2 = V

3π2 (2m
h̄2

)
3
2E

1
2
f Ef .

⇒ N
Ef

= V
3π2 (2m

h̄2
)
3
2E

1
2
f .

dN
dEf

= D(Ef ) = 3
2
V

3π2 (2m
h̄2

)
3
2E

1
2
f .

D(Ef ) = 3
2
N
Ef

.

Hence Cel = 1
3
π2k2

BT.
3
2
N
Ef

.

Cel = 1
2
π2k2

BT ( N
Ef

).

For a free electron system, Ef = kBTf ;

Tf is the fermi temperature.

Thus Cel = 1
2
π2k2

BT ( N
kBTf

).
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