% = SZQ(iL_m)%E%
N _ %(%)%E%
55 = D(E)

A graph of density of orbitals D(FE) against energy is of the form shown below:

I(E) ke T —]

The shaded area represents filled orbital at absolute zero (Fermi surface). A dashed curve
represents density f(E,T)D(FE) of filled orbital at a finite temperature such that kg7 is small
in comparison with E¢. The average energy is increased when the temperature is increased

from 0 to T, for electrons thermally excited from region 1 to region 2.

FERMI DIRAC DISTRIBUTION FUNCTION
As seen earlier when electrons are filling the energy levels, two electrons occupy the lowest
energy level, two or more the next level and the process continues until all the electrons in the
metal have been accomodated. The distribution of electrons among the levels is best described

by the distribution function f(F) which is defined as the probability that the level E is occupied
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by an electron.

At T=0 K the distribution function takes the form

1 ; E<Ef,
f(E) =
0 ; Ef<E,

The distribution means that all levels below E¢ are completely filled and those above E; are

completely empty.

At T # 0K, f(E) is given by f(E) = —g——, where y is a chemical potential usually a function

o

ekBT +1

of temperature. The function is known as the Fermi-Dirac distribution function.
At T=0 K; p = Ef and f(F) =0.

A graph of f(F) against E is as shown;

ﬁE) N
1
T=0K
0 Ey £

Note: The distribution at T" # 0K is substantially the same as in T=0 K except very close
to the fermi level where some of the electrons are excited from below Ef to above it. When
the system is heated, thermal energy excites the electrons but this energy is not shared equally

by all the electrons as would be the case in classical treatment. This is because the electrons
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lying below the fermi level £y cannot absorb energy. If they did then they would move to
higher level which would already be occupied, thus violating Pauli-exclusion principle. Thus
only those electrons close to the fermi level can be excited because the levels above Ej are
empty and hence they would move to those levels without violating Pauli exclusion principle.
The above statement means that the fermi surface is not affected appreciably by temperature
because as seen when the temperature is increased only those electrons close to the fermi sur-
face are excited from the inside to the outside of the fermi sphere. Since they are few, they
have very little effect over all. Thus fermi surface has an independent permanent identity and

should be regarded as a real physical characteristic of the metal.

ELECTRONIC HEAT CAPACITY
In statistical mechanics the free particle has a heat capacity of %kB. For N atoms, then heat
capacity is equal to %N kg.
However the observed electronic contributions at room temperature is usually less than 0.01 of
this value. To account for this discrepancy we shall use Fermi’s finding which recognise that
the specific heat varnishes at absolute zero and that at low temperatures it is proportional to
absolute temperature.
When a specimen is heated from absolute zero, not every electrons gain energy ~ kg1 as ex-
pected but only those electrons in orbitals within the energy range kg7 of the fermi level are
thermally excited.
For a system of N electrons heated from 0 K to a temperature T, for kg << Ef, then the

increase in internal energy is given by

AU = [Z(E = E;) f(E)D(E)AE + [/ (E; — E)[1 - f(E)]D(E)dE=A+B,
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where A represents energy needed to take electrons from Ey to orbitals of energy £ > Ey, B is
the energy needed to bring the electron to E; from orbitals below Ej.

f(E)D(E)dE is the number of electrons elevated to orbitals in the energy range dE at an
energy F.

[1 — f(E)] is the probability that an electron has been removed from an orbital E.

From fxy = fa? + foy = fa? - fyo = foy - fom

Thus AU = [[° — OEf](E — Ef)f(E)A — [7(E — Ep)[1 — f(E)|A(E)E.
AU = [(E — Ef)f(E)A f (E— Ef)A(E)dE.

The electronic heat capacity is given by C,; = gg,

Cuu = [ — Ep)J(E)AEB)E — [(E ~ Ep)A(E)dE.

Since Ey is a constant and E and A(FE) are temperature independent, the second term vanishes;

Cu= [F(E—Ep)AE) L2 qE.

Recall that f(E) = —=

When kT << Ey, p = E; and kT = T.

= f(E) = -

e 7T f+1
From 7 = kgT, 4 o = kp.
E_E E*Ef
df _ f e T
But & = (== =%
(e +1)2
__ df dr
From chain rule, 4 dT T
R E*Ef
df _ —Lf e T
= dT — k'B( 72 ) E—Ej .
(e +1)2
E—E;

Let z =
dE = 7dx = kgT'dx
Changing the limits gives,

Cur = D(E) [, kp 2B
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o |-Et
T
(0. @) 0. @)
kpzle
el - f Ef z+1)2kBde

Cu = KETA(E) [*%,

:1:+1)2

For kT << Ey, 7 =kgT — 0asT — 0.

:>—%—>ooandE%Ef.

Oel = k?%TA(Ef) f—oo el—i-l dl’
Cu = 25 TAEy) [ i da
Using standard integrals, [ o H)de =

= fo ez+1)2dx =
Cy = k?BTA(Ef).%z.
Oel = %]{%TWZA(EJC)

But A(Ef) de

_ 1 2127 N
For a free electron system, Ey = kgTY;

T} is the fermi temperature.

Thus Cel 1 QkQBT(kBTf)
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