If current cannot flow out of the rod in the y direction, then drift velocity év, = 0 and thus
from
vy = — S FE, and wotv, = £ F,,
Then E, = —w.TE, = —5CF, .

Recall that the current density is defined by %Ew

j=mne*rZ.

Then, j = ne%’%.

If we introduce a ratio jfgo = —6?757. ~ BOHLET o
jf_]g’o = —é = RH

where Ry is the hall coefficient which is negative for free electrons. The lower the carrier con-

centration the graeter the magnitude for the hall coefficient.

INTRODUCTION TO BAND THEORY OF SOLIDS
Electrons in a crystal are arranged in energy bands separated by regions of energy for which
no wave-like electron orbitals exist. Such regions are called energy gaps or band gaps. We
may visualise the difference between conductors, insulators and semi-conductors by plotting

the available energies for the electron in the material.
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An important parameter in the band theory is the fermi level which is the top of the available
electron energy levels at low temperature. The position of the fermi level in relation to the

conduction band is a crucial factor in determining electrical properties.

ENERGY BAND MODEL AT ABSOLUTE ZERO

A. CONDUCTORS:

Energy of electrons 7

Conduction band

Fermi level

Overlap region

The valence band is the lowest energy level and is completely filled with electrons. Con-

duction band is the upper energy band and is empty of electrons since it corresponds to the un
occupied higher levels in an isolated atom.

The forbidden energy gap is the region between the valence band and the conduction band. In
metals or conductors the atomic and crystal structures are such that the valence band and the
conduction band overlap hence the valence electrons move freely throughout the solid making

metals excellent electric conductors.

B. INSULATORS:

Insulators have a wide forbidden energy gap for electrons from the valence band to move
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Energy of clectrons /

Conduction band

Forbidden energy gap

Valence band

freely. As a result there are no electrons to act as carriers in the conduction band and therefore
insulators cannot contribute to electrical conductivity.
Doping of insulators can drammatically change their optical properties but it is not enough to

overcome the large band gap to make them good conductors of electricity.

C. SEMI CONDUCTORS:

Energy of electrons

Conduction band

e _/_ /— Forbidden energy gap
\ \\\ Valence band

In semi conductors, the forbidden energy gap is narrow, therefore at room temperature a

few electrons can be excited from the valence band to the conduction band across this forbidden
energy gap.
The corresponding electron vacancies in the valence band make it possible for the electrons in
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this band to contribute to electrical conductivity.

ORIGIN OF ENERGY GAP
Nearly free electron gap or theory:
The free electron theory is successful in explaining many of the properties of metals. However

it doesnot explain why:
(i) some materials are metals and others insulators.

(ii) some metals have positive hall coefficients indicating the presence of mobile charged car-

riers within them.

Thus the nearly free electron theory tries to improve the free electron theory by taking into
account the fact that the positive ions do not produce a uniform attractive potential but one
with strong negative peaks at the lattice size i.e it includes a weak periodic perturbation meant
to model the interaction between the conduction electrons and the ions in the crystal.

In dealing with the free electron gas in 3-D the wave function that satisfies the free particle
Schrodinger equation and periodicity conditions takes the form:
() = ik

Considering the time independent states represented by the two standing waves of the form

iTX ..
et = cos% + ’LSZTL%C.

iTx

The standing waves are ¢(+) = e'a + e o = 2cos

ITT
-

iTT T

W(—) =€ —e o = 2isinTL,
The + signs indicate whether the standing waves change sign. The two waves pile up electrons
at different values of potential energy in the field of ions of the lattice. This is the origin of the

energy gap.
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It is best described if the individual probability density, p of a particle is given by
p=vy* = [y
or p =y YTl

Hence for a pure travelling wave (¢ = e*®), p = e etkz = 1,

This implies that the charge density is constant. For a linear combination of waves, the charge
density is not constant.

Recall that ¥(+) = 2cos™*

= py = dcos*(I)

2
py X cos*(TF).

Similarly, for ¢(—) = 2isin=*

Travelling wave

1 (+) piles up the electronic charge on the cores of the positive ions thereby lowering the
potential energy in comparison with the average potential energy seen by a travelling wave. On
the otherhand the wave function v (—) piles up charge in the region between the ions thereby
raising the potential energy in comparison with that seen by the travelling wave (¢)(—) concen-
trates electrons away from the ion cores).

When the average values of the potential energy for the three charge distributions i.e for the
travelling wave, 1(+) and t(—) is calculated, the result is that the potential energy of p, is
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lower than that of the travelling wave whereas that of p_ is higher than that of the travelling
wave.

p+ < Ptravellingwave < p—.

Hence we have an energy gap of width F,.

THE BLOCH THEOREM

It states that the solutions of the Schrédinger equation —%% + V(x)y(r) = EY(r).

PY(r)  2m B N
) 2 vl = o )

are the plane waves modulated by the function U (7) which has the same periodicity as the
lattice 1 (7) = e*7UL(7).

The potential V(r) includes interaction of electrons with all the atoms in the solid as well as
its interaction with other electrons. Thus the potential is periodic. Let the potential of the
electrons satisfy V() = V(7 + R), where R is the lattice vector or period.

According to Bloch theorem the solution to the equation (*) will be given by ¢y (7) = eiE'FUk(f’)
for a periodic potential U, where the function U, has the same translation symmetry as the
lattice or period i.e Uy(F+ R) = Uy(F).

Since the potential V' (7) is periodic then all observable quantities associated with the electron
must be periodic. This also includes the quantity [¢)(r)|* which gives the electron probability.
The only function which satisfies this requirement for all 7 is one of the exponential form i.e
eifveer  Thus the solution to the Schrédinger equation has the Bloch form.

Wave functions of the form vy (7) = eiE'FUk(F) are called Bloch functions where the function

¥r(7) has the following properties:

ik.vecr

1. It has the form of the travelling wave represented by e which implies that the electron
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