
lower than that of the travelling wave whereas that of ρ− is higher than that of the travelling

wave.

ρ+ < ρtravellingwave < ρ−.

Hence we have an energy gap of width Eg.

THE BLOCH THEOREM

It states that the solutions of the Schrödinger equation − h̄2

2m
∂2ψ(r)
∂x2

+ V (x)ψ(r) = Eψ(r).

∂2ψ(r)

∂x2
+

2m

h̄2 [E − V (r)]ψ(r) = o (*)

are the plane waves modulated by the function Uk(~r) which has the same periodicity as the

lattice ψk(~r) = ei
~k.~rUk(~r).

The potential V (r) includes interaction of electrons with all the atoms in the solid as well as

its interaction with other electrons. Thus the potential is periodic. Let the potential of the

electrons satisfy V (~r) = V (~r + ~R), where ~R is the lattice vector or period.

According to Bloch theorem the solution to the equation (*) will be given by ψk(~r) = ei
~k.~rUk(~r)

for a periodic potential U, where the function Uk has the same translation symmetry as the

lattice or period i.e Uk(~r + ~R) = Uk(~r).

Since the potential V (~r) is periodic then all observable quantities associated with the electron

must be periodic. This also includes the quantity |ψ(r)|2 which gives the electron probability.

The only function which satisfies this requirement for all ~r is one of the exponential form i.e

ei
~k.vecr. Thus the solution to the Schrödinger equation has the Bloch form.

Wave functions of the form ψk(~r) = ei
~k.~rUk(~r) are called Bloch functions where the function

ψk(~r) has the following properties:

1. It has the form of the travelling wave represented by ei
~k.vecr which implies that the electron
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propagates through the crystal like a free particle.

2. The electron has a de Broglie wave length λ = 2π
k

and hence momentum ~p = h̄~k since it

behaves as a wave of vector ~k.

3. The bloch function ψk is a crystal orbital as it is delocalised throughout the solid. Thus the

electron is shared by the whole crystal.

Read about: Extrinsic and Intrinsic semi conductors.

HOLES AND ELECTRONS

Vacant orbitals in a band are commonly called holes. Holes in the valence band can be treated

as positively charged carriers.

INTRINSIC CARRIER CONCENTRATION

Here we shall be expressing the number of electrons excited to the conduction band at temper-

ature T in terms of the chemical potential µ (of the fermi level) and the energy gap (Eg). We

suppose for the conduction band of a semi conductor E − µ >> kBT and thus the fermi dirac

distribution function reduces to fe = e
(µ−E)
kBT .

This defines the probability that the conduction electron of the orbital is occupied (valid fe <<

1). The density of states in the conduction band at energy E is De(E) = 1
2π2 (2me

h̄2
)
3
2 (E − Ec)

1
2

where Ec is the energy at the conduction band edge.

The concentration of electrons in the conduction band is given by

n =
∫∞
Ec
De(E)fe(E)dE
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⇒ n = 1
2π2 (2me

h̄2
)
3
2 e

µ
kBT

∫∞
Ec

(E − Ec)
1
2 e

−E
kBT dE

n = 2(
mekBT

2πh̄2 )
3
2 e

(µ−Ec)
kBT (1)

Similarly we can also calculate the concentration of holes, P. Here the distribution function fh

for holes is given by fh = 1 − fe, where fe is the probability distribution for the electron hole

concentration i.e since a hole is the absence of an electron.

fh = 1− 1

e
(E−µ)
kBT +1

fh = 1

e
(µ−E)
kBT +1

≈ e
(E−µ)
kBT provided (µ− E) >> kBT .

If the holes near the top of the valence band behave as particles with effective mass, mh, then

Dh(E) = 1
2π2 (2mh

h̄2
)
3
2 (Ev − E)

1
2 , where Ev is the energy of the valence band edge.

The hole concentration p in the valence band is given by P =
∫ Ev
−∞Dh(E)fh(E)dE

p = 2(
mhkBT

2πh̄2 )
3
2 e

(Ev−µ)
kBT (2)

Multiplying expressions for n and p, we obtain equilibrium relation,

np = 4(
kBT

2πh̄2 )3(memh)
3
2 e

−Eg
kBT (3)

where Eg = Ec − Ev is the energy gap.

We note from equation (3) that np is independent of the fermi level µ (temperature dependent).

Thus at a given temperature, np is a constant. Since for an intrinsic semi conductor the number

of electrons is equal to the number of holes (because the thermal excitation of an electron leaves

behind a hole in the valence band) with a notation i refering to intrinsic, we then have from

equation (3) that

ni = pi = 2( kBT
2πh̄2

)
3
2 (memh)

3
4 e

−Eg
2kBT which implies that the intrinsic carrier depends exponentially

on Eg
2kBT

.
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Setting equations (1) and (2) to be equal, we obtain

e
2µ
kBT = (mh

me
)
3
2 e

Eg
kBT

⇒ µ = 1
2
Eg + 3

4
kBT ln(mh

me
).

For mh = me, µ = 1
2
Eg and thus the fermi level is in the middle of the forbidden energy gap.

THE EFFECTIVE MASS AND CURVATURE

When a free electron is subjected from electric field ~E, it experiences an acceleration given by

a = −e ~E
m

. However, when electric field is applied to a crystal, few electrons if any have a = −e ~E
m

.

This is because the crystal electrons are so tightly bound to the atoms that they can not be

accelerated at all. For an electron which is not bound to any atoms, Newton’s second law gives

ma = −eE+ Force due to neighbouring ion cores and the electrons.

The sum of these other forces is not known quantitatively and thus ignoring them, the initial

expression can be written as m∗~a = −eE where m∗ is the effective mass.

Considering the wave energy relation E = h̄2k2

2m
, the curvature is defined as d2E

dk2
= 1

m
. Then

the coefficient of k2 determines the curvature of E versus k. For an electron in a I-D lattice we

assume that the electron moves with a group velocity given by Vg = 1
h̄
dE
dk

and the external force

acting on the electron is given as F = h̄dk
dt

.

Hence dVg
dt

= 1
h̄
d2E
dkdt

.

dVg
dt

= 1
h̄
d2E
dk2

dk
dt

But dk
dt

= F
h̄

.

⇒ dVg
dt

= 1
h̄2

(d
2E
dk2

)F .

F = h̄2

d2E
dk2

dVg
dt

.

Identifying h̄2

d2E
dk2

as the mass, then the above equation is identical to Newton’s second law.
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